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Abstract

A finite volume algorithm for the solution of the reaction–advection–diffusion equation on the sphere is derived and
evaluated using analytical solutions. The proposed approach is based on the principle of semidiscretization. The convec-
tive and diffusive fluxes are approximated first, and then the resulting set of the ordinary differential equations (ODEs) is
solved using the appropriate time stepping algorithm. In the first part of the paper, solutions to both the linear advec-
tion and the advection–diffusion problems for a single conservative scalar are discussed. The monotonicity of the scheme
is achieved with the explicit adaptive dissipation. The development as well as the selected applications of the method are
illustrated using a finite volume mesh constructed on the basis of geodesic icosahedral grid, which, in the past 40 years,
has been frequently applied in different models of geophysical fluid dynamics. The performance of the solver is assessed
using a suite of standard tests based on solid body rotation for different initial conditions. After analysis of the advec-
tion–diffusion problem, the extension of the method for the equations with reactive terms is presented. The performance
of the solver is assessed by comparing the results to the analytical solution of the linearized reaction–diffusion system. In
the final part of the paper, the application of the solver for studies of nonlinear reactions on the sphere is illustrated.
The main intended application of the proposed method includes the simulation of transport of chemical constituents in
the Earth�s atmosphere as well as the forecasting of moisture and cloud water fields in numerical weather prediction and
climate models.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Advection on the sphere; Icosahedral grid; Atmospheric transport; Finite volume method; Reaction–diffusion waves
1. Introduction

An accurate numerical solution of the reaction–advection–diffusion equation is crucial for the simulation
of a large class of physical systems described by interdependent scalar fields. Specific examples include such
different problems as the transport of water vapour in the Earth�s atmosphere [42] and the formation
of complex spatial structures in systems of interacting chemical species [19]. In mathematical terms, the
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problem considered in all those different studies consists of solving of a set of partial differential equations
of the form:
ouk

ot
¼ �ruuk þrKruk þ F k

cðu1; . . . ;uN sÞ; ð1Þ
where uk is the kth scalar field; uk : Ms ! R1,Ms � R3 is the computational domain, k = 1, . . .,Ns, Ns is num-
ber of scalar fields, u is the three-dimensional velocity field, (u : Ms ! R3), r ” (x,y,z), K is the diffusion tensor,
$ is the nabla operator, and F k

c are the functions. In general case, F k
c can be written as aklmu

lum + bklu
l, where

aklm and bkl are the kinetic coefficients. We seek the solution of (1) with the mixed Dirichlet–von Neumann
boundary conditions describing absorption and emission processes at the boundary of Ms. The system of
Eqs. (1) is inherently nonlinear since the interaction term F k

c involves the product of concentrations. As op-
posed to hydrodynamic systems, the nonlinearity in the reaction–advection–diffusion equation is associated
with the dissipative terms in the balance equation. Furthermore, since the F k

c term is not explicitly dependent
on u, Eq. (1) can exhibit complex nonlinear behaviour even for spatially homogeneous systems.

The system of the reaction–advection–diffusion equations (1) admits a rich class of solutions ranging from a
relatively simple linear advection [44] to nonlinear reaction–diffusion waves leading to the formation of com-
plex, spatially nonhomogeneous patterns [18]. Consequently, there is a large body of literature describing spe-
cialized techniques for the numerical solution of (1). The available algorithms are based on different
methodologies including finite differences, finite volumes, finite element and semi-Lagrangian techniques on
various structured and unstructured meshes (see [21] for the review of general aspects).

The main objective of this paper is to explore numerical algorithms for the solution of the reaction–
advection–diffusion equation (1) on the sphere; the main intended application being a simulation of the inter-
acting scalar fields in the planetary atmospheres. Representative examples of possible problems in this area
include transport of chemical constituents in the Earth�s atmosphere [24] as well as forecasting of moisture
and cloud water fields in numerical weather prediction and climate models [27,25].

In the past, such problems have often been solved using semi-Lagrangian techniques which offer certain
advantages when applied to the linear advection on structured meshes in computational domains with simple
geometries [33]. These advantages are, however, less evident when solving (1) in complex geometries with non-
linear reaction terms. In order to provide an alternative to the semi-Lagrangian techniques for solution of the
reaction–advection–diffusion equation, we decided to develop a simple and accurate Eulerian algorithm build
upon the principle of finite volumes. The approach adopted here exploits the concept of semidiscretization (see
[13, p. 191]); we first approximate the convective and diffusive fluxes in (1) and then, we solve the resulting set
of the ordinary differential equations (ODEs) using the appropriate time stepping algorithm. This methodol-
ogy has been selected because of both its flexibility with respect to the mesh selection and its inherent ability to
represent subgrid-scale processes and discontinuities in the solution. In the design of the method for the
numerical solution of (1), we have acknowledged several major problems including the technique employed
to discretize spatial terms, the choice of the time integration algorithm, and the methodology required to
assure the monotonicity of the entire scheme.

The development and the selected applications of the method are illustrated using a finite volume mesh con-
structed on the basis of a geodesic icosahedral grid which has been introduced to geophysical fluid dynamics
by Williamson [41] and Sadourny et al. [28]. In the past few years, various variants of spherical geodesic grids
have been used in the numerical models of atmospheric flows [15,26,36].

The paper is organized as follows. Following the construction of the finite volumes on the sphere using the
icosahedral grid, we discuss the solution of the linear advection and the advection–diffusion problems for a
single conservative scalar. The monotonicity of the scheme is achieved with the explicit adaptive dissipation
proposed by Shchepetkin and McWilliams [30]. The rationale for the selection of this method is motivated
by the fact that classical split-directional algorithms such as van Leer algorithm [40] are not applicable for
the icosahedral grid. It is worth mentioning, however, that there are several other viable alternatives to the
strategy presented here. They include Smolarkiewicz MPDATA [31,34] and Osher�s (W)ENO [14].

The performance of the advection–diffusion solver is assessed using the suite of standard tests based on so-
lid body rotation [16] of cosine hill, cylinder, and multiscale signal as suggested by Smolarkiewicz and Gra-
bowski [32]. After the analysis of the advection–diffusion problem, we present the solution of the transport
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equation with reactive terms. The performance of the solver in this case is assessed using the analytical solu-
tion of the reaction–diffusion system on the sphere introduced by Turing [38] in the context of the investigation
of pattern formation in biological systems. The ideas presented by Turing are particularly useful for the inves-
tigation of reactive systems in a spherical geometry both in the general context and from the point of view of
geophysical problems. In the final part of the paper, we illustrate the application of the solver for studies of
nonlinear reaction–diffusion systems on the sphere.

2. Definition of the set of control volumes on the sphere

The set of finite volumes on the sphere is constructed in two stages. In the first stage, the geodesic mesh
which covers the sphere in a quasi-uniform manner is defined. The mesh is generated starting from an icosa-
hedron imbedded in the sphere. We begin by bisecting the edges of the icosahedron and projecting the bisec-
tion points on the surface of the sphere. The projected points are then connected to form a set of new triangles
(see [6] for further details). The entire algorithm can be repeated an arbitrary number of times leading to the
connected set of triangles approximating the spherical surface with desired accuracy (Fig. 1). The nodes of
Fig. 1. Generation of the geodesic grid based on an icosahedron imbedded in the sphere.
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these triangles define the connected planar graph G with Np vertices, Ne edges, and Nf faces. The number of
faces Nf(k) and the number of edges Ne(k) of G at each iteration k are given by the following relations for
kP 0: Nf(k) = 22kNf(0), and N eðkÞ ¼ 3

2
N fðkÞ, where Nf(0) ” 20 is the number of faces in the icosahedron.

The number of vertices of G can be derived from the Euler theorem for graphs [8]: Np(k) = 2 + Ne(k) � Nf(k).
After substitution of the relations for Ne(k) and Nf(k), we obtain N pðkÞ ¼ 1

2
N fðkÞ þ 2 (see Table 1 for a sum-

mary of the properties of geodesic grids).
In the second stage, the geodesic mesh, obtained after performing the desired number of iterations, is used

to construct a set of finite volumes on the sphere. For each ith vertex of G we define a set of coincident edges
Ei � fi; jðiÞg. Each edge (i, j(i)) from this set is shared by two triangles (Fig. 2):
Table
Proper

k

0
1
2
3
4
5
6

T1
ijðiÞ � Mði; jðiÞ; x1ijðiÞÞ; T2

ijðiÞ � Mði; jðiÞ; x2ijðiÞÞ;
where x1ijðiÞ and x2ijðiÞ are the two exterior points defining triangles build on edge (i, j(i)).
We denote the mid-point of edge (i, j(i)) as Eij(i) and the mass centers of T1

ijðiÞ and T2
ijðiÞ as M

1
ijðiÞ and M2

ijðiÞ,
respectively (see Fig. 2). The positions of these points can be defined explicitly as: rEijðiÞ ¼
ðri þ rjðiÞÞ=2; rM1

ijðiÞ ¼ 1
3
ðri þ rjðiÞ þ rx1ijðiÞÞ, and rM2

ijðiÞ ¼ 1
3
ðri þ rjðiÞ þ rx2ijðiÞÞ, where ri, rj(i), r

x1
ijðiÞ, and rx2ijðiÞ are positions

of points i, j(i), x1ijðiÞ, and x2ijðiÞ, respectively.
The control volume Xi associated with the ith node is then defined by a two step procedure. In the first step,

we project the centers of the triangles and the mid-points of the edges on the surface of the sphere:
rm1

ijðiÞ ¼ P rM1

ijðiÞ

� �
; rm2

ijðiÞ ¼ P rM2

ijðiÞ

� �
; reijðiÞ ¼ P rEijðiÞ

� �
; ð2Þ
where P is the projection operator defined as: P(r) = ar/|r|, and a is the radius of the sphere; we assume that
a = 1 hereafter. In the second step, we define Xi as a polygon bound by a closed contour connecting all pro-
jected points
1
ties of geodesic grids used in the experiments

22k Number of faces, Nf(k) = 22kNf(0) Number of edges, N eðkÞ ¼ 3
2Nf ðkÞ Number of vertices, NpðkÞ ¼ 1

2Nf ðkÞ þ 2

1 20 30 12
4 80 120 42
16 320 480 162
64 1280 1920 642
256 5120 7680 2562
1024 20,480 30,720 10,242
4096 81,920 122,880 40,962

Fig. 2. Triangles used in the definition of the finite volumes on the sphere.
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oXi � frm1

ijðiÞ; r
e
ijðiÞ; r

m2

ijðiÞgjjðiÞ2fjðiÞg; ð3Þ
where {j(i)} is the set of incident nodes at node i (Fig. 3). An example of the set of finite volumes after two
iterations is depicted in Fig. 4.

The most important characteristic of each node of G is the degree indicating the number of incident edges.
The vertices of G corresponding to the nodes of the original icosahedron have degree five, whereas all new
vertices obtained by the division of edges of triangles have degree six. The graph G is uniquely defined by spec-
ifying for each node number ‘‘i’’ a set of incident nodes {j(i)} or, equivalently, by the adjacency matrix defined
as follows [8]:
Aij ¼
0 if points i and j are not connected;

1 if points i and j are connected.

�
ð4Þ
The structure of the adjacency matrix depends on the selected node ordering. In the case of the algorithm
based on the bisection of triangles, new nodes obtained in each iteration are numbered consecutively following
the old nodes. The sample adjacency matrix for this labelling of mesh points is depicted in Fig. 5 (right upper
Fig. 3. The finite volume Xi associated with a single node i.

Fig. 4. Example of the finite volume mesh associated with the geodesic mesh after second iteration.



Fig. 5. The distribution of nodes of the geodesic mesh after the second iteration (left upper panel) and the corresponding connectivity
matrix (right upper panel). The distribution of nodes after application of the Cuthill–McKee algorithm (left lower panel) and the
corresponding connectivity matrix (right lower panel).
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panel). The main conclusion from the analysis of this sparsity pattern is that the bandwidth ofA is quite large.
This is not desirable from the point of view of a construction of the compact discrete representation of the
advection operator on G. The bandwidth of A can be reduced upon the node reordering according to the
Fig. 6. Vectors normal to the boundary of Xi (yellow) and vectors tangential to the circle connecting points i and j(i) (red).
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Cuthill–McKee algorithm (see [39, p. 98]). The adjacency matrix for the new ordering of mesh points can be
obtained from the transformation ~A ¼ P�1AP; where P is the permutation operator reordering the nodes
following application of the Cuthill–McKee algorithm. The adjacency matrix, after reordering of nodes, is
shown in Fig. 5 (right lower panel). The bandwidth of ~A is quite small; this property will lead to the definition
of the differential operators with a compact stencil.

3. Discretization of the advection equation

We start our considerations from the advection equation for a single, conservative tracer written in a flux
form:
ou
ot

¼ �rf;

f ¼ uu.
ð5Þ
After integration of (5) over Xi defined by (3) and applying the Stokes theorem (see [5, p. 64]) we obtain the set
of ODE�s governing the grid cell average values of u:
d/i

dt
¼ � 1

SðXiÞ

Z
oXi

f � n dl; ð6Þ
where /i is the grid cell average of u over the finite volume Xið/i ¼ huii ¼
R
Xi
uðr; tÞ dr=SðXiÞÞ;

i ¼ 1; . . . ;Np; � denotes the scalar product, S(Xi) is the surface of Xi, and oXi denotes the boundary of Xi.
After approximating of the integral term in (6), we obtain the following set of linear equations:
d/i

dt
¼ � 1

SðXiÞ
X
jðiÞ

X2
k¼1

f uðrðmkÞ
ijðiÞ ; tÞ

� �
� dlðkÞijðiÞn

ðkÞ
ijðiÞ

� �
; ð7Þ
where oXi is defined by (3),
P

jðiÞ
P2

k¼1 denotes the summation over elements constituting boundary of Xi,
fðuðrðmkÞ

ijðiÞ ; tÞÞ is the flux through the segment of the boundary connecting points m1
ijðiÞ, eij(i) and m2

ijðiÞ; dl
ðkÞ
ijðiÞ is

the length of the segment of dXi connecting points eij(i) and mk
ijðiÞðdl

ðkÞ
ijðiÞ ¼ jreijðiÞ � rmk

ijðiÞj; k ¼ 1; 2Þ, and n
ðkÞ
ijðiÞ is

the vector normal to the segment of dXi connecting points eij(i) and mk
ijðiÞ, (n

ð1Þ
ijðiÞ ¼ reijðiÞ � rm1

ijðiÞ; n
ð2Þ
ijðiÞ ¼ rm2

ijðiÞ�
reijðiÞ) (see Fig. 6).

In order to complete the discretization, we need to express flux fðuðrðmkÞ
ijðiÞ ; tÞÞ in terms of grid cell averages.

One of the best known approximations is that based on the upwind scheme in which the flux through each

segment ðrðeÞijðiÞ; r
ðmkÞ
ijðiÞ Þ is:
fðuðrðmkÞ
ijðiÞ ; tÞÞ � n

ðkÞ
ijðiÞ ¼

/iuijðiÞ � n
ðkÞ
ijðiÞ for ðuijðiÞ � nðkÞijðiÞÞ > 0 ðoutflowÞ;

/jðiÞuijðiÞ � n
ðkÞ
ijðiÞ for ðuijðiÞ � nðkÞijðiÞÞ 6 0 ðinflowÞ;

(
ð8Þ
where uij(i) = (ui + uj(i))/2.
After substitution of (8) to (7) and some algebra, we obtain the explicit form of the upwind approximation:
d/i

dt
¼ � 1

2

X
jðiÞ

X2
k¼1

/i uijðiÞ � nðkÞijðiÞ þ juijðiÞ � nðkÞijðiÞj
� �

fðkÞijðiÞ þ /jðiÞ uijðiÞ � nðkÞijðiÞ � juijðiÞ � nðkÞijðiÞj
� �

fðkÞijðiÞ; ð9Þ
where fðkÞijðiÞ ¼ dlðkÞijðiÞ=SðXiÞ.
The set of equations (9) defines a Cauchy problem for the vector of cell averages. In order to perform fur-

ther the analysis, it is more convenient to rewrite (9) in a vector form:
d/

dt
¼ �Au/; /ð0Þ ¼ /0; ð10Þ
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where /ðtÞ ¼ ½/1ðtÞ;/2ðtÞ; . . . ;/Np
ðtÞ�T is the vector of grid cell average values of the scalar field, and Au is the

sparse matrix with diagonal elements of the form
Auii ¼
X
jðiÞ

X2
k¼1

1

2
uijðiÞ � nðkÞijðiÞ þ juijðiÞ � nðkÞijðiÞj
� �

fðkÞijðiÞ; ð11Þ
and off-diagonal elements
AuijðiÞ ¼
X2
k¼1

1

2
uijðiÞ � nðkÞijðiÞ � juijðiÞ � nðkÞijðiÞj
� �

fðkÞijðiÞ. ð12Þ
The set of equations (10) can be integrated using the Euler-forward scheme:
/ðt þ DtÞ ¼ /ðtÞ � DtAu/ðtÞ; ð13Þ
where Dt is the time step.
The scheme expressed by (13) is stable provided that the norm of /(t + Dt) does not exceed the norm of

/(t), i.e.,
j/ðt þ DtÞj
j/ðtÞj 6 1. ð14Þ
After substitution of (13) to (14), we obtain the following criterion for the stability of (13):
jI� DtAuj 6 1; ð15Þ

where I is a matrix representing unit operator.

It is well known that the upwind approximation of the advection equation produces nonoscillatory re-
sults [13]; unfortunately, the scheme has significant numerical diffusion which is manifested as a very strong
damping of the amplitude of the advected field. In order to obtain more accurate results than those pro-
vided by the upwind scheme, we have to find a different formula for the approximation of the flux term
in (7). In principle, there are two main approaches to the problem. The first one is based on the extension
of the basic ideas of Godunov [7] which were introduced in the context of gas dynamics (upwinding with the
slope limiting). The discussion of this approach in the context of unstructured meshes is presented by Hub-
bard [9].

The second approach to the problem is based on the use of central approximation of fluxes in conjunction
with high order time integration in the spirit of Kreiss and Oliger [11]. This methodology requires an appro-
priate dissipation scheme to suppress the numerical noise. In the following section, we perform the explicit
construction of the operators corresponding to the high order central scheme based on the second approach.
The discussion of the dissipation mechanism is presented in Section 6.
4. Construction of advection operators based on central approximation of fluxes

Flux term in (7) can be approximated using the relation:
fðuðrðmkÞ
ijðiÞ ; tÞÞ ¼ wijðiÞuijðiÞ; ð16Þ
where wij(i) is the interface value. In order to evaluate wij(i), we assume that the variation of u over the triangles
M1 ¼ ðri; rm1

ijðiÞ; r
e
ijðiÞÞ and M2 ¼ ðri; rm2

ijðiÞ; r
e
ijðiÞÞ is described:
u ¼
pðlÞq1ðh1Þ for M1;

pðlÞq2ðh2Þ for M2;

�
; ð17Þ
where (l,h1) and (l,h2) are the local cartesian coordinate systems with the origin at ri, on the planes defined by
n1 and n2, respectively (with l-direction determined by ðreijðiÞ � riÞ), and p, q1, q2 are the polynomials satisfying
the following relations:
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1

SðM1Þ

Z
M1

pq1 dl dh1 ¼ /i;

1

SðM2Þ

Z
M2

pq2 dl dh2 ¼ /i;

q1ð0Þ ¼ q2ð0Þ ¼ 1;

ð18Þ
where S(Di) is the area of ith triangle. The idea of using polynomials for reconstruction of the field within the
control volume was originally proposed by Colella and Woodward in the piecewise parabolic method (PPM)
[4]. Here we assume that polynomial p(l) is of the form
pðlÞ ¼ w3ðlÞ ¼ al3 þ bl2 þ clþ d. ð19Þ

We can evaluate the coefficients of (19) by fitting it to the variable values and first derivatives at two nodes ri
and rj(i). The coefficients can be thus obtained by solving the following set of linear equations:
w3ð0Þ ¼ /i;

w0
3ð0Þ ¼ /0

i;

w3ðLijðiÞÞ ¼ /jðiÞ;

w0
3ðLijðiÞÞ ¼ /0

jðiÞ;

ð20Þ
where /0
i ¼ haijðiÞr/ji;/

0
jðiÞ ¼ hbijðiÞr/jjðiÞ, and l 2 [0,Lij(i)], and Lij(i) = arccos(ri � rj(i)). The normalized vectors

haijðiÞ, h
b
ijðiÞ are tangential to the great circle CðLijðiÞÞ passing through the points ri and rj(i). These vectors can

be expressed explicitly by the double vector products, haijðiÞ ¼ ðri � rjðiÞÞ � ri and hbijðiÞ ¼ ðri � rjðiÞÞ � rjðiÞ. Eq.
(20) can be transformed, after substitution of the explicit form of w3(l), into
0 0 0 1

0 0 1 0

L3
ijðiÞ L2

ijðiÞ LijðiÞ 1

3L2
ijðiÞ 2LijðiÞ 1 0

266664
377775

a

b

c

d

26664
37775 ¼

/i

/0
i

/jðiÞ

/0
jðiÞ

266664
377775. ð21Þ
Upon solving (21), we obtain the explicit expressions for coefficients in w3(l) and, consequently, the interface
value wij(i) can be calculated from the following relation:
wijðiÞ ¼ w3

LijðiÞ

2

� �
q1ð0Þ ¼ w3

LijðiÞ

2

� �
q2ð0Þ ¼

1

2
/i þ /jðiÞ

� �
þ 1

8
LijðiÞ /0

i � /0
jðiÞ

� �
. ð22Þ
Alternatively, the interface value can be evaluated assuming that p(l) is a a fifth order polynomial. The cor-
responding expression for the interface value in this case is:
wijðiÞ ¼
1

2
/i þ /jðiÞ

� �
þ 5

32
LijðiÞ /0

i � /0
jðiÞ

� �
þ 1

64
L2
ijðiÞ /00

i þ /00
jðiÞ

� �
; ð23Þ
where /00
i ¼ haijðiÞ � rðhaijðiÞr/jiÞ, and /00

jðiÞ ¼ hbijðiÞ � rðhbijðiÞr/jjðiÞÞ.
After calculation of flux (16) using the formula for the interface value obtained from cubic interpolation

(22), we substitute the resulting expression in (7) in order to obtain the following set of equations:
d/i

dt
¼ �

X
jðiÞ

1

2
/i þ /jðiÞ

� �
þ 1

8
LijðiÞ haijðiÞr/ji � hbijðiÞr/jjðiÞ

� �� �
cijðiÞ; ð24Þ
where
cijðiÞ ¼
uijðiÞn

ð1Þ
ijðiÞdl

ð1Þ
ijðiÞ þ uijðiÞn

ð2Þ
ijðiÞdl

ð2Þ
ijðiÞ

SðXiÞ
.

The analogical set of equations for the higher order interpolation scheme can be obtained after calculation of
flux (16) using the interface value obtained from (23). After substitution of the resulting flux in (7) we obtain:
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d/i

dt
¼ �

X
jðiÞ

1

2
/i þ /jðiÞ

� �
þ 5

32
LijðiÞ haijðiÞr/ji � hbijðiÞr/jjðiÞ

� �
þ 1

64
L2
ijðiÞ haijðiÞ � r haijðiÞr/ji

� ���

þ hbijðiÞ � r hbijðiÞr/jjðiÞ
� ���

cijðiÞ. ð25Þ
In order to approximate the gradient operator in (24) and (25) we apply the Stokes theorem as follows:
Z
Xi

ru dr ¼
Z
oXi

un dl. ð26Þ
After division of both sides of (26) by S(Xi), we obtain
hruii ¼ rhuii ¼ r/ji ¼
1

SðXiÞ

Z
oXi

un dl. ð27Þ
The integral on the right-hand side of (27) is discretized as follows:
Z
oXi

undl ¼
X
jðiÞ

X2
k¼1

wðui;ujðiÞÞdl
ðkÞ
ijðiÞn

ðkÞ
ijðiÞ; ð28Þ
where w(ui,uj(i)) is the interface value that can be approximated by either linear or quadratic interpolation.
For both cases of interpolation, the explicit expression for the interface value is w(ui,uj(i)) = a/i + b/j(i), with
a = b = 0.5 for the linear interpolation and a = 0.25, b = 0.75 for the quadratic one. In the calculations
involving (24) and (25) we used the latter set of values whereas the former set was used for the evaluation
of the $2 operator in the next section. The explicit expression for the gradient operator can be obtained by
substituting (28) in (27)
r/ji ¼
X
jðiÞ

X2
k¼1

ða/i þ b/jðiÞÞn
ðkÞ
ijðiÞf

ðkÞ
ijðiÞ. ð29Þ
To assure that the gradient of the constant field be exactly zero, the expression in (29) can be modified by addi-
tion of the correction term suggested by Tomita et al. [37].
r/ji ¼
X
jðiÞ

X2
k¼1

ða/i þ b/jðiÞÞn
ðkÞ
ijðiÞf

ðkÞ
ijðiÞ � /i

X
jðiÞ

X2
k¼1

n
ðkÞ
ijðiÞf

ðkÞ
ijðiÞ. ð30Þ
In the calculations reported here the corrective term is not included since it has no observable impact on the
results when using (30) with (24) or (25), particularly on grids obtained after six or more iterations.

The expression for gradient (29) can be compactly written in a vector form as
r/ ¼ ½Gx/;Gy/;Gz/�; ð31Þ
where /ðtÞ ¼ ½/1ðtÞ;/2ðtÞ; . . . ; /Np
ðtÞ�T, and Gd (d = x,y,z) are the gradient operators represented by sparse

matrices with nonzero elements described by the following relations:
Gdii ¼
P
jðiÞ

P2
k¼1

anðkÞdijðiÞf
ðkÞ
ijðiÞ diagonal elements;

GdijðiÞ ¼
P2
k¼1

bnðkÞdijðiÞf
ðkÞ
ijðiÞ off-diagonal elements.

8>>><>>>: ð32Þ
Further analysis of the problem will be significantly simplified if Eqs. (24) and (25) are rewritten in the oper-
ator form. In particular, (24) can be cast in the vector form as follows:
d/

dt
¼ � A0 þHxGx þHyGy þHzGz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

264
375/. ð33Þ
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The operators A0 and Hd (d = x,y,z) are (Np · Np) sparse matrices with nonzero elements defined by the fol-
lowing relations:
Fig. 7.
after n
A0ii ¼ 1
2

P
jðiÞ

cijðiÞ; H dii ¼ 1
8

P
jðiÞ

LijðiÞh
a
dijðiÞcijðiÞ diagonal elements;

A0ijðiÞ ¼ 1
2
cijðiÞ; H dijðiÞ ¼ � 1

8
LijðiÞh

b
dijðiÞcijðiÞ off-diagonal elements.

8<: ð34Þ
A sample structure of the operator A3 appearing in Eq. (33) is depicted in Fig. 7 (the effect of reordering of
nodes is also depicted in this figure). Further, the corresponding vector version of scheme (25) is analogous to
(33) with operator A3 replaced by operator A5 of the following form:
A5 ¼ A0 þ
5

4
ðHxGx þHyGy þHzGzÞ þHxxGxGx þHyyGyGy þHzzGzGz þHxyðGxGy þGyGxÞ

þHxzðGxGz þGzGxÞ þHyzðGyGz þGzGyÞ; ð35Þ
where elements of Hml (l = x,y,z,m = x,y,z) are defined as follows:
H mlii ¼ 1
64

P
jðiÞ

L2
ijðiÞh

a
mijðiÞh

a
lijðiÞcijðiÞ diagonal elements;

H mlijðiÞ ¼ 1
64
L2
ijðiÞh

b
mijðiÞh

b
lijðiÞcijðiÞ off-diagonal elements.

8<: . ð36Þ
A sample structure of operator A5 is depicted in Fig. 8. Operator A5, after node reordering, has a very regular
structure, similar to that of operator A3 but with a larger number of diagonals.

The numerical solution of (33) can be accomplished with different ODE solvers. Because of its simplicity
and effectiveness for advection problem the fourth-order Runge–Kutta scheme has been selected here [44].
The solution of the advection equation can be expressed as
/ðt þ DtÞ ¼ /ðtÞ þ 1

6
ðf1 þ 2f2 þ 2f3 þ f4Þ;

f1 ¼ DtLð/Þ; f2 ¼
Dt
2
Lð/þ f1Þ; f3 ¼

Dt
2
Lð/þ f2Þ; f4 ¼ DtLð/þ f3Þ;

ð37Þ
where Lð/Þ ¼ A/, with A = �A3 or A = �A5. (The selection of the ODE solvers can be expanded by the
addition of semi-implicit and implicit methods.)

Further, in order to obtain an explicit formula for the advancement of the solution in time, we substitute
Lð/Þ ¼ A/ in (37) and after some algebra
The structure of A3 operator for the geodesic mesh obtained after two iterations, left panel without node reordering, right panel
ode reordering.



Fig. 8. Same as in Fig. 7 but for A5 operator.
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/ðt þ DtÞ ¼ Iþ DtAþ Dt2

2
A2 þ Dt3

6
A3 þ Dt4

24
A4

� �
/ ¼ Ks/ðtÞ. ð38Þ
The time advancement of the solution can be thus accomplished with one multiplication of vector /(t) by a
sparse matrix Ks. The stability of this scheme is assured for |Ks| 6 1.

Eq. (38) can be alternatively derived from the Taylor expansion of / as
/ðt þ DtÞ � /ðtÞ þ Dt
d/

dt
þ Dt2

2

d2/

dt2
þ � � � þ Dtn

n!
dn/

dtn
� � � ð39Þ
After substitution of dn//dtn = An/ in (39) we obtain:
/ðt þ DtÞ � /ðtÞ þ DtA/þ Dt2

2
A2/þ � � � þ Dtn

n!
An/þ � � � ð40Þ
Expression (40) for n = 4 is formally equivalent to (38) derived from the fourth order Runge–Kutta scheme,
(37).

5. Incorporation of the diffusion term

A semidiscrete approximation of the advection–diffusion equation is obtained after substituting
f = uu � K$u in (6):
d/i

dt
¼ � 1

SðXiÞ

Z
oXi

uun dlþ 1

SðXiÞ

Z
oXi

Krun dl. ð41Þ
The discretization of the first integral on the right-hand side of (41) is given explicitly either by (33) or by (35).
The discretization of the second integral is derived from the Stokes theorem as
1

SðXiÞ

Z
oXi

Krun dl ¼ rhKuii. ð42Þ
Assuming that $ÆKuæi = $ÆKæiÆ$æi we obtain
1

SðXiÞ

Z
oXi

Krun dl ¼ rhKiir/i. ð43Þ
After substituting (43) in (41) and using the general expression for gradient given by (31) with a = b = 0.5, we
obtain
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d/

dt
¼ �A3/þ

X
lm

Gl jlm � ðGm/Þ
	 


; ð44Þ
where jlm ¼ ½hKlmi1; . . . ; hKlmiNp
� are the vectors of grid cell average values of the components of the diffusion

tensor, l = x,y,z, and m = x,y,z.
The selection of the solver for the time integration of (44) is flexible and can include both semi-implicit and

implicit algorithms. The discussion of the possible strategies of integration of (44) is presented in numerous
texts on the ODEs (see for example [12] for the discussion of general aspects). For the large scale geophysical
problems with relatively weak horizontal mixing, the time integration of (44) can be accomplished with the
help of the technique discussed in the context of the advection equation. In particular, one can use the scheme
described by (38) with operator A replaced by operator AD defined as
AD ¼ �A3 þ
X
lm

Gl jlm �Gm

	 

. ð45Þ
For a more general case with stronger diffusion, the time integration scheme can be changed to the implicit or
semi-implicit in order to assure the solver stability.
6. Monotonic version of the advection scheme

The solution of the advection equation obtained using scheme (38) is not monotone in accordance with the
Godunov theorem [7]. The most common problem in the approximate solution of (1) reported in the literature
is preserving the amplitude of the advected scalar field while avoiding numerical oscillations which are detri-
mental to the nonlinear term F k

c in (1). A complete elimination of these oscillations is particularly difficult to
achieve for scalar fields exhibiting large gradients or discontinuities. In order to correctly represent the approx-
imate solution of (1) under these conditions, most of the known general algorithms for the advection equation
rely either on some kind of upwinding with slope limiting [13] or on flux corrected transport (FCT) techniques
[2,46]. In the geophysical context, the class of techniques designed to suppress numerical oscillations in the
advected scalar fields is extended by the method known as the explicit local adaptive dissipation (ELAD)
[30]. For the advection equation, the ELAD methodology is particularly attractive because it assures quasi-
monotonicity in the high order central schemes for the advection equation in a natural manner without
excessive dissipation. There are also several other approaches that complement the upwinding, FCT and in
particular, ELAD techniques. One among the most notable ones is the MPDATA algorithm [31,34] which
relies on the upwind technique with an iterative antidiffusion procedure.

In order to eliminate spurious oscillations which can be generated by a numerical scheme, we decided to
employ ELAD [30]. The generalization of the method for the grid system discussed here follows.

In the first step, we compute the solution for advection using the algorithm described by (38):
/ð0Þ ¼ Ks/ðtÞ. ð46Þ

Contrary to the analytical solution, the approximate solution given by (46) is not constrained by the bounds
defined as
8i2½1;Np �

/ðmaxÞ
i ¼ max /iðtÞ;/ðmax uÞ

i

h i
;

/ðminÞ
i ¼ min /iðtÞ;/ðmin uÞ

i

h i
;

8><>: ð47Þ
where
8i2½1;Np �
/ðmax uÞ

i ¼ max /jðtÞ : j 2 fJuðiÞg
	 


;

/ðmin uÞ
i ¼ min /jðtÞ : j 2 fJuðiÞg

	 
(

and {Ju(i)} is the set of nodes located upstream to the ith node.

The measure of the deviation of the numerical solution from the correct, bounded solution can be provided
by the excess field defined as
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�
ð0Þ
i ¼ maxð0;/ð0Þ

i � /ðmaxÞ
i Þ þminð0;/ð0Þ

i � /ðminÞ
i Þ. ð48Þ
The excess field � is zero for the solution of the equation within the bounds (/min
i 6 /ð0Þ

i 6 /max
i ).

In order to obtain the corrected value of the solution, the excess field is diffused:
/ð1Þ ¼ /ð0Þ þDm�
ð0Þ; ð49Þ
where �ð0Þ ¼ ½�ð0Þ1 ; . . . ; �
ð0Þ
Np
�T, Dm is a diffusion operator defined as Dm = m (GxGx + GyGy + GzGz), and operators

Gx,Gy,Gz are defined by (32). Coefficient m is selected in such a manner that m 6 mmax; mmax is the value for
which |I + Dm| < 1.

The procedure described above leads to a significant reduction of spurious oscillations. In general, a single
application of (49) is not sufficient to eliminate all noise and, consequently, all steps described above are re-
peated in an iterative manner. Formally, the iteration procedure can be written as
�
ðkÞ
i ¼ maxð0;/ðkÞ

i � /ðmaxÞ
i Þ þminð0;/ðkÞ

i � /ðminÞ
i Þ evaluate the excess field;

/ðkþ1Þ ¼ /ðkÞ þDm�
ðkÞ diffuse the excess field.

(
ð50Þ
The solution for the next time step is then given as:
/ðt þ DtÞ ¼ /ðnmaxÞ;
where nmax is the maximum number of iterations. The selection of the number of iterations and the value of
the coefficient m is discussed in detail by Shchepetkin and McWilliams [30].

It is suggested that the the value of m should be close to that permitted by the stability considerations (mmax).
However, in most practical cases, it is sufficient to use a smaller value of m. The large values of m, close to mmax,
should be reserved for regions with very sharp gradients. This procedure has significant impact on the further
reduction of the dissipation of the method as well as on the preservation of the maximum values of the ad-
vected tracer fields.

The other possible improvement of the method consists of the modification of the procedure used to eval-
uate the permissible bounds (47). In the current formulation, the bounds are determined as minima and
maxima among previous-time-step values at the point itself and the nearest values in every upstream direc-
tion regardless of the magnitude of the velocity in that direction. This definition can contribute to inaccu-
rate results in situations when the flow is perpendicular to the gradient of advected field. In such a case, the
bounds are set predominantly by the points located on the line perpendicular to the flow, which actually do
not affect much the change of the advected quantity. Therefore, it is advisable to define bounds (47) in such
a manner that they depend on differences in concentrations multiplied by the corresponding edge Courant
numbers, so that points which only weakly influence the net change due to advection will not affect permis-
sible bounds.
7. Evaluation of the algorithm for advection

The performance of numerical schemes for the advection equation is evaluated by performing numerical
tests with a prescribed velocity field as in [43]:
ux ¼ �eu sinðkÞ � ev sinðhÞ cosðkÞ;
uy ¼ eu cosðkÞ � ev sinðhÞ sinðkÞ;
uz ¼ ev cosðhÞ; ð51Þ
where eu ¼ XðcosðhÞ cosðaÞ þ sinðhÞ cosðkÞ sinðaÞÞ; ev ¼ �X sinðkÞ sinðaÞ, h is the latitude, k is the longitude, a
is the angle between the sphere axis and the axis of rotation, and X is the angular frequency of rotation. We
consider first the initial condition described by a cosine hill:
/ðriÞ ¼
gðriÞ þ c/ for dðri; roÞ 6 ra;

c/ for dðri; roÞ > ra;

�
ð52Þ
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where g(ri) = (1 + cos(pd(ri,ro)/ra))/2, ri is the position of the center of the control volume, ro is the position of
the center of the mass distribution, ra and c/ are parameters, and d(ri,ro) is the distance between ro and ri. All
advection tests are performed on a geodesic grid with 40,962 nodes (see Table 1 for additional parameters of
this grid). In the experiment, we assumed X = 2p/12, Dt = 0.025, ra = 7 p/64, and c/ = 2. For this set of
parameters, the maximum value of the edge Courant number, C ¼ ujðiÞDt=ðjri � rjðiÞjÞ is 0.75.

The first test consisted of advecting a cosine hill in the velocity field (51) through the North and South Poles
(a = p/2 in (51)). The numerical solution obtained with the scheme defined by Eq. (33) (labeledS1) is depicted
in Fig. 9. It is evident that the method maintains the maximum value of the distribution and is almost free of
any computational noise. In order to evaluate the numerical solution quantitatively, we introduce l1, l2 and l1
norms defined as:
Fig. 9.
directl
geodes
analyt
l1 ¼
Iðj/� /ajÞ
Iðj/ajÞ

; ð53Þ

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðð/� /aÞ

2Þ
Iðð/aÞ

2Þ

s
; ð54Þ

l1 ¼ maxðj/� /ajÞ
maxðj/ajÞ

; ð55Þ
where Iðf Þ ¼
R
S
f ds is the integral over S, /0 is the initial condition, /a is the analytical solution, and / is

the numerical solution. The mass conservation is measured by either a loss or a gain of mass normalized by the
initial mass:
Solid body rotation of a cosine hill after one revolution using schemeS1. The upper right panel shows results plotted on the sphere
y from the polygons defining the control volume mesh, and the left upper panel the numerical solution interpolated from the
ic mesh to the latitude–longitude grid. The right lower and the left lower panels compare the numerical solutions (solid line) and the
ical solution (line marked by stars) along the lines passing respectively through the north and south poles and along the equator.
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M ¼ Ið/Þ �Ið/aÞ
Ið/0Þ

. ð56Þ
The ability of the scheme to preserve minimum and maximum values is measured by two quantities,
fmin ¼
minð/Þ �minð/0Þ

D/0

; ð57Þ

fmax ¼
maxð/Þ �minð/0Þ

D/0

; ð58Þ
where D/0 = max(/0) � min(/0) (for an ideal scheme for passive advection we should have fmin = 0 and
fmax = 1).

The data in Table 2 contain the summary of the experiments with advection of a cosine hill. For brevity,
we label schemes (33) and (35) by S1 and S2, respectively. The numerical data confirm an overall good
accuracy of both schemes. In particular, the maximum and minimum values are very well preserved. Both
methods are also mass conserving; quantity M defined by (56) is equal to zero with the precision of machine
2
ary of the experiments with the cosine hill

d l1 l2 l1 M fmin fmax

d 0.0037 0.0205 0.2581 0.0000 �0.0001 0.3846
0.0003 0.0008 0.0065 0.0000 �0.0125 0.9989
0.0002 0.0005 0.0034 0.0000 �0.0101 0.9980

. The logarithm of l2 as a function of the logarithm of the average distance between the nodes of the geodesic mesh (scheme S1 is
nted by the dashed line, and scheme S2 by the solid line).
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accuracy. Method S2 is more accurate than method S1 with respect to l2 and l1 norms. For reference
purposes, we also include results obtained with the upwind scheme (13). The examination of fmin and fmax

values clearly points to the fact that the upwind scheme leads to a rather severe reduction of the initial
amplitude and, for this reason, is not practical for solving problems where preservation of the extreme
values is important.

In order to illustrate the convergence of the scheme, we solved the advection equation on grids with differ-
ent resolutions. After each of the experiments, we calculated l2 norm. The logarithm of l2 versus the logarithm
of the average distance between nodes of the grid is depicted in Fig. 10. Examination of the average slope of
the lines shown in this figure indicates that both schemes achieve approximately the second order of accuracy;
scheme S2 is converging slightly faster, particularly in the range of finer resolutions. The fact that schemes S1

andS2 exhibit the same rate of convergence despite the different interpolation formulae is caused by the use of
the mid-point rule for the integral term approximation in (6) (see Eq. (7) for illustration). The sample solutions
for the scheme S1 on grids number 3, 4, 5, and 6 are depicted in Fig. 11. Indeed, the method converges quite
quickly as shown in the plot of l2 norm in Fig. 10.

In addition to the standard test with cosine hill, we also investigated advection of a cylindrical mass distri-
bution which can be obtained from (52) after substituting g(ri) = 1. The velocity field in the latter advection
test was the same as that for the cosine hill test. The summary of the experiments is presented in Table 3 where,
for reference, the results obtained for the upwind scheme are also included.

The examination of fmin and fmax values for schemes S1 and S2 indicates clearly that the method is not
monotonic for the cylindrical mass distribution as predicted by the Godunow theorem [7]. However, this
undesirable property can be eliminated by adding dissipation as discussed in Section 6. Sample results for
the advection of a cylindrical mass distribution performed using scheme S1 with the with three corrective iter-
ations (50) and m = 10�3 is presented in Fig. 12. Examination of the shape of the solution confirms that the
Fig. 11. The illustration of the convergence of S1 scheme. The left upper, right upper, left bottom, and right bottom panels show the
solution obtained after one revolution on grids number 3, 4, 5, and 6, respectively.



Table 3
Summary of the experiments with the cylindrical mass distribution

Method l1 l2 l1 M fmin fmax

Upwind 0.0115 0.0430 0.2334 0.0000 �0.0001 0.8341
S1 0.0114 0.0213 0.1819 0.0000 �0.2320 1.2930
S2 0.0117 0.0237 0.2197 0.0000 �0.3280 1.3060
S1 + ELAD 0.0027 0.0167 0.1869 0.0000 �0.0183 1.0263
S2 + ELAD 0.0028 0.0174 0.1919 0.0000 �0.0196 1.0425
FCT 0.0024 0.0181 0.2150 0.0000 �0.0005 1.0006

Fig. 12. Same as in Fig. 9 but for a cylindrical mass distribution.
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results are quasi-monotonic. Consequently, the minimum and maximum values are well preserved. The most
important property of the schemes with adaptive dissipation is that mass is conserved down to the machine
accuracy, similarly as for the the original schemes, S1 and S2, without the dissipation mechanism.

In order to evaluate the accuracy of the monotonic versions of S1 and S2, we compared them to the flux
corrected transport (FCT) algorithm ([46] and [20], p. 285). The solution of the advection equation for a cylin-
drical mass distribution obtained with FCT is depicted in Fig. 13. The comparison of the results shown in
Figs. 12 and 13 indicates clearly that both schemes produce almost equivalent results. Furthermore, the set
of norms in Table 3 provides some additional evidence of the nearly similar performance of S1 þ ELAD,
S2 þ ELAD and FCT. This fact confirms that various approaches to the monotonicity of advective schemes
are in many ways equivalent despite the different types of constraints employed to assure the monotonicity
of the solutions.

The tests with both cosine hill and cylindrical mass distribution are not sufficient to comprehensively eval-
uate a numerical scheme. In order to complete the investigation of the accuracy of the method, the additional



Fig. 13. Same as in Fig. 12 but for results obtained with the flux corrected transport (FCT) algorithm.
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test with an initial condition containing both smooth and discontinuous parts was performed. A good example
of such an initial condition is the multiscale signal shown in Fig. 14 and described by the following function of
h and k:
/ðh; kÞ ¼ cos4ðhÞ f1ðkÞ þ f2ðkÞ þ 2ð Þ 1þ 0:3 sin
50

9
k

� �� �
1þ 0:4 sin

50

10
k

� �� �
; ð59Þ
Fig. 14. The multiscale signal at the initial time.
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where f1(k) = �1 for k 2 D1 ¼ ½8p=25; 28p=25�; f1(k) = 0 for k 2 ½0; 2p� �D1, and f2(k) = 1 for
k 2 D2 ¼ ð28p=25; 39p=50�; f2(k) = 0 for k 2 ½0; 2p� �D2.

The function described by (59) is a product of cos4(h) and the formula suggested by Smolarkiewicz and
Grabowski [32] for testing monotonic advection schemes. The main property of the function depicted in
Fig. 14 is a discontinuous manner in which smooth 2-D distributions on the spherical surface are connected
with each other.

Considering the symmetry of the initial condition depicted in Fig. 14, we selected the velocity field (51), with
parameter a = 0 (this corresponds to the uniform flow around the Equator). In order to assure the monoto-
nicity of the solution, we used two corrective iterations and m = 0.25 · 10�3. The results from the advection of
profile (59) obtained from S1 þ ELAD are depicted in two panels on the left-hand side of Fig. 15. Evidently,
the numerical solution preserves general shape of the initial condition. In particular, small-scale transition
zones between continuous parts of the field are maintained with a reasonable accuracy. The solution obtained
from the FCT algorithm is shown on the right-hand side of Fig. 15. The comparison of the two solutions
shown in Fig. 15 indicates clearly that both schemes produce quite equivalent results. The main noticeable
difference is that the shape of small scale transition zones between continuous parts of the field is maintained
by the monotonic version of S1 method with significantly better accuracy than by the FCT algorithm. Exam-
ination of data in Table 4 further indicates that the monotonic version of S1 has also smaller l2 and l1 norms
than the FCT algorithm.

The results of the suite of the solid body rotation tests indicate that the presented method preserves rela-
tively well the shape of the advected profiles. In particular, circular shapes are advected without characteristic
elongation of the original shape. This effect was especially evident in the solutions obtained with the linear
Fig. 15. The solid body rotation test of the multiscale signal; results after one revolution along the equator. The left upper panel shows
results obtained using S1 scheme with ELAD whereas the left lower panel depicts both the analytical solution (line marked by stars) and
the numerical solution (line marked by stars) along the equator. The right upper and lower panels show the analogical information
obtained with the FCT algorithm.



Table 4
Summary of the experiments with the multiscale signal

Method l1 l2 l1 M fmin fmax

Upwind 0.1246 0.1301 0.2665 0.0000 0.0000 0.8692
S1 0.0266 0.0392 0.2223 0.0000 �0.0101 1.0109
S2 0.0289 0.0445 0.2607 0.0000 �0.0119 1.0174
S1 + ELAD 0.0180 0.0354 0.2250 0.0000 �0.0004 0.9942
S2 + ELAD 0.0196 0.0393 0.2587 0.0000 �0.0009 0.9916
FCT 0.0145 0.0386 0.2646 0.0000 0.0000 0.9882
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interpolation applied for the evaluation of the interface value. The adaptive dissipation is sufficient to suppress
numerical noise without significant damping of the amplitude of the main signal. Furthermore, the dissipation
scheme does not affect the conservation properties.

The algorithm is also very compact and efficient. The entire calculation is accomplished by a single matrix
vector multiplication followed by an iterative ELAD procedure. In order to evaluate the timing of the algo-
rithm, it is convenient to do this with respect to the upwind scheme (13). The algorithm without the monotonic
option is four times slower than simple upwind scheme. With the addition of the ELAD option with two iter-
ations, the scheme is about 10 times slower when compared to the upwind algorithm.
8. Incorporation of terms representing coupling between scalar fields

The semidiscrete approximation to the advection–diffusion equation with reaction terms can be written in a
manner analogous to (6) as
d/k
i

dt
¼ � 1

SðXiÞ

Z
oXi

ðuuk � KrukÞn dlþ 1

SðXiÞ

Z
Xi

F k
c dr; ð60Þ
where i 2 [1,Np], and k 2 [1,Ns], Ns is the number of interacting scalar fields. After applying the discretization
defined by (44), we can rewrite (60) in the vector form as
d/

dt
¼ �ðIN s 	 ADÞ/þ Fð/Þ; ð61Þ
where AD is defined by (45), IN s is the Ns · Ns unit diagonal matrix, 	 denotes the Kronecker product, and
/ ¼ ½/1
1;/

1
2; . . . ;/

1
Np
;/2

1;/
2
2; . . . ;/

2
Np
; . . . ;/N s

1 ;/N s
2 ; . . . ;/N s

Np
�T;

F ¼ hF 1
c1i; . . . ; hF 1

cNp
i; hF 2

c1i; . . . ; hF 2
cNp

i; . . . ; hF N s
c1 i; . . . ; hF N s

cNp
i

h iT
.

There are several possible techniques for the numerical integration of (61). In the majority of applications
this equation is solved using the fractional steps method [20,45]. The advantage of this approach is its flexi-
bility in combining the advection algorithm with a specialized chemical solver (various advection schemes
can be linked to different chemical solvers in order to create the algorithm suited for a specific application).
For the system of Eqs. (61), the fractional step method amounts to splitting the equation into two parts:
d/

dt
¼ �ðIN s 	 ADÞ/;

d/

dt
¼ Fð/Þ.

ð62Þ
At each time step, the advection–diffusion problem is solved first using the algorithm described in the pre-
vious sections. The obtained solution serves then as an initial condition for the second of equations in (62)
which is integrated with the help of the appropriate ODE solver. Such an approach has already been used
in models of atmospheric chemistry (see for example [24]). The selection of a specific method for the numerical
integration of the chemistry part depends primarily on the form of F in (62). In instances when the coupling of



J.A. Pudykiewicz / Journal of Computational Physics 213 (2006) 358–390 379
equations involves very different time scales, specialized stiff solvers need to be used [21]. In the context of
atmospheric sciences, the list of possible techniques include both specialized explicit solvers and highly accu-
rate implicit methods. The brief description of these techniques and their evaluation is presented in [29].

An alternative approach to the operator splitting is the direct solution of Eq. (61) using an appropriate
ODE solver. The selection of a scheme depends mainly on values of the diffusion coefficient as well as the stiff-
ness of the chemical terms. In the simplest case of the advection dominated problem with weak diffusion and
nonstiff chemical terms, we can apply the explicit fourth order Runge–Kutta method, so the compactly written
solution of (61) is
/ðt þ DtÞ ¼ /ðtÞ þ 1

6
ðf1 þ 2f2 þ 2f3 þ f4Þ;

f1 ¼ �DtðIN s 	 ADÞ/ðtÞ þ DtFð/ðtÞÞ;

f2 ¼ �Dt
2
ðIN s 	 ADÞð/þ f1Þ þ

Dt
2
Fð/þ f1Þ;

f3 ¼ �Dt
2
ðIN s 	 ADÞð/þ f2Þ þ

Dt
2
Fð/þ f2Þ;

f4 ¼ �DtðIN s 	 ADÞð/þ f3Þ þ DtFð/þ f3Þ.

ð63Þ
When the stiffness of the chemical terms is a factor but diffusion is relatively small we can apply a semi-im-
plicit technique in which the transport operator is treated explicitly whereas chemical terms are treated implic-
itly. The example of such a technique is provided by the class of additive semi-implicit Runge–Kutta schemes
[47]. The coefficients of these schemes are derived in such a manner that the methods are both high order accu-
rate and strongly A-stable for the implicit terms. The specific variant of the method of this type is a third order
additive semi-implicit Runge–Kutta scheme derived in [47]. The corresponding algorithm can be written com-
pactly as:
/ðt þ DtÞ ¼ /ðtÞ þ x1f1 þ x2f2 þ x3f3;

f1 ¼ PT
c f½I� a1DtJcð/0Þ�

�1
Pc½DtFTð/0Þ þ DtFð/0Þ�g;

f2 ¼ PT
c f½I� a2DtJcð/0Þ�

�1
Pc½DtFT ð/0 þ b21f1Þ þ DtFð/0 þ c21f1Þ�g;

f3 ¼ PT
c f½I� a3DtJcð/0Þ�

�1
PcDt½FTð/0 þ b31f1 þ b32f2Þ þ Fð/0 þ c31f1 þ c32f2Þ�g;

ð64Þ
where ai, xi, bij, cij are constants, FTð/Þ ¼ �ðIN s 	 ADÞ/, I is the unit diagonal matrix of size NpNs · NpNs,
J ¼ foF=ougj/0

is the Jacobian of the chemical system, /0 ” /(t = 0), Pc is the permutation operator changing
ordering of elements of / to the chemical sequence: e/ ¼ ½/1

1;/
2
1; . . . ;/

N s
1 /1

2;/
2
2; . . . ;/

N s
2 /1

Np
;/2

Np
; . . . ;/N s

Np
�T.

(Note that e/ ¼ Pc/, Pc is unitary and P�1
c � PT

c .)
The strategy of integration of reactive flow problems using the semi-implicit Runge–Kutta schemes is

becoming more popular in the area of atmospheric chemistry [10]. The main reason being the simplicity of
algorithms and good performance in the integration of stiff chemical systems. The selection of the methods
for integration of (61) without operator splitting can be further expanded by the modification of (64) by
including the diffusion terms implicitly. This is particularly important when the significance of the diffusion
process is comparable to that of chemical reactions.

In the following section, we will investigate the properties of the numerical solution of the coupled set of the
mass conservation equations using schemes (63) and (64). The numerical solutions will be evaluated using the
analytical solutions of the Turing [38] system.
9. Evaluation of the algorithm for the reaction–diffusion system

The addition of chemical reactions considerably enriches the class of possible solutions as compared to a
simple advection. Considering this fact, it is important to perform the evaluation of a numerical solution
for a system of reactions which is relatively simple but still admits interesting and complex solutions. These
requirements are well satisfied for the following system of reactions describing the autocatalytic conversion
of species X to Y:
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A ! X;

BþX ! Yþ C;

2XþY ! 3X;

X ! D.

ð65Þ
In the above system, the concentrations of species A and B are fixed and species C, and D are byproducts.
The system of reactions, (65), known as Brusselator was introduced in the context of the investigation of oscil-
lations in chemical systems [22]. In terms of kinetic equations, the set of reactions, (65), can be described as
du1

dt
¼ k1A� k2Bu1 þ k3ðu1Þ2u2 � k4u1;

du2

dt
¼ k2Bu1 � k3ðu1Þ2u2;

ð66Þ
where k1, k2, k3 and k4 are the reaction rates, u1, u2, A and B are concentrations of species X, Y, A and B,
respectively. In the subsequent discussion it is assumed, without the loss of generality, that all reaction rates
are equal to one. The system (66) has a single stationary point with coordinates u1

s ¼ A and u2
s ¼ B=A. The

sample phase trajectories of (66) are depicted in Fig. 16; notice that the point with coordinates u1
s and u2

s

is the attractor of the system.
After the reaction terms defined by (66) are included in the diffusion equation, the following system is

obtained
ou

ot
¼ FðuÞ þ Kr2u; ð67Þ
where
u ¼ u1

u2

� �
; F ¼ A� Bu1 þ ðu1Þ2u2 � u1

Bu1 � ðu1Þ2u2

 !
; K ¼

l 0

0 m

� �
;

and l and m are the diffusion coefficients for u1 and u2, respectively.
The behaviour of system (67) is quite complex (see [23] for the general discussion). The most interesting

feature is the emergence of different spatial patterns which appear even when equations are integrated with
simple homogeneous initial conditions. The second salient feature is the occurrence of inhomogeneous
stationary states which can be obtained for some values of the control parameters, A, B, l, and m. The
investigation of structures governed by (67) illustrates the existence of complex nonlinear behaviour in
the dissipative system.

Before proceeding to the analysis of some aspects of the numerical solutions, we first analyse the linear ver-
sion of (67). Let us start with the Taylor series expansion around the stationary point
oðus þ duÞ
ot

¼ FðusÞ þ
oF

ou

� �
us

duþ � � � þ Kr2ðus þ duÞ; ð68Þ
where 

du ¼ u� us ¼

du1

du2

� �
; us ¼

u1
s

u2
s

 !
;

oF

ou

� �
us

¼ B� 1 A2

�B �A2

 !
.

Considering that $2us ” 0 and ous/ot ” 0, we can rewrite the set of equations (68) in the following linearized
form:
odu1

ot
¼ adu1 þ bdu2 þ lr2du1;

odu2

ot
¼ cdu1 þ ddu2 þ mr2du2;

ð69Þ
where a = B � 1, b = A2, c = �B, and d = �A2.



Fig. 16. Phase trajectories of the Brusselator system for A = 2, B = 5, and k1 = k2 = k3 = k4 = 1. The graphs in the left upper, right upper,
left lower, and right lower panels show the trajectories for the progressively larger basin of influence.
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The system of equations, (69), has the same form as that used by Turing [38] in the study of the reaction–
diffusion waves on the sphere. Here we use the methodology suggested by Turing [38] in order to find the
analytical solution of (69) and to evaluate the numerical solution of the reaction–diffusion system on a
geodesic grid. In particular, we seek the solutions of (69) which can be expressed as a linear combination
of spherical harmonics:
du1ðh; k; tÞ ¼
X1
n¼0

Xm¼n

m¼�n

Am
n ðtÞY m

n ðh; kÞ; du2ðh; k; tÞ ¼
X1
n¼0

Xm¼n

m¼�n

Bm
n ðtÞY m

n ðh; kÞ; ð70Þ
where Am
n ðtÞ;Bm

n ðtÞ 2 R1, and Y m
n ðh; kÞ is the spherical harmonic.

After substituting (70) into (69), applying rY m
n ¼ �nðnþ1Þ

r2 Y m
n and taking into account orthogonality of Y m

n ,
we obtain the following system of the ODEs for Am

n and Bm
n :
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dAm
n

dt
¼ a� l

r2
nðnþ 1Þ

� �
Am
n þ bBm

n ;

dBm
n

dt
¼ cAm

n þ d � m
r2
nðnþ 1Þ

� �
Bm
n .

ð71Þ
The analytical solution of (71) can be obtained from the theory of the linear ODEs (see for example [1, p. 123])
as:
Am
n

Bm
n

� �
¼
X2
k¼1

CkX
n
k expx

n
kt; ð72Þ
where Ck are the constants evaluated from the initial conditions, and Xn
k are the eigenvectors of J

n
D, the latter

being defined as:
Jn
D ¼

an b

c dn

� �
; an ¼ a� l

r2
nðnþ 1Þ; dn ¼ a� m

r2
nðnþ 1Þ;
xn
k are the roots of the characteristic equation of (71):
detðxI�Jn
DÞ ¼ x2 � trðJn

DÞxþ detðJn
DÞ ¼ 0; ð73Þ
where I is a 2 · 2 unit matrix, trðJn
DÞ ¼ an þ dn, and detðJn

DÞ ¼ andn � bc. The expressions for the roots can
be written compactly as
xnð1;2Þ ¼ cn 
 dn;

cn ¼
1

2
trðJn

DÞ; dn ¼
1

2

ffiffiffiffiffi
Dn

p
;

Dn ¼ tr2ðJn
DÞ � 4 detðJn

DÞ
� �

.

ð74Þ
The nature of the roots of (74) and, consequently, the type of the solution of (72) depend on the signs of Dn,
trðJn

DÞ, and detðJn
DÞ (see [1,3] for the discussion of possible cases). In particular, the solutions of the form of

damped harmonic oscillations are obtained for Dn < 0 and trðJn
DÞ < 0. In terms of the relation between A and

B, these conditions can be expressed by the following requirements:
A2 � 2Agn þ g2n < B < A2 þ 2Agn þ g2n;

B < A2 þ fn;
ð75Þ
where
g2n ¼ 1þ nðnþ 1Þ
r2

ðl� mÞ; fn ¼ 1þ nðnþ 1Þ
r2

ðlþ mÞ.
After evaluation of cn, dn and constants in the general solution, we obtain the explicit formulae for the ana-
lytical solution of (69):
du1 ¼
X1
n¼0

Xm¼n

m¼�n

ecntðAm
n coshðdntÞ þBm

n sinhðdntÞÞY m
n ðh; kÞ;

du2 ¼
X1
n¼0

Xm¼n

m¼�n

ecntðCm
n coshðdntÞ þDm

n sinhðdntÞÞY m
n ðh; kÞ;

ð76Þ
where
Am
n ¼ Am

n ð0Þ;
Bm

n ¼ ð2eanA
m
n ð0Þ þ 2bBm

n ð0ÞÞ=dn;
Cm

n ¼ Bm
n ð0Þ;

Dm
n ¼ ð2cAm

n ð0Þ þ 2ebnB
m
n ð0ÞÞ=dn
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and
ean ¼
1

2
ðan � dnÞ; ebn ¼ �ean.
In his seminal paper, Turing [38] referred to the solution of the form of (76) as reaction–diffusion waves.
The solution expressed by (76) can be used to evaluate the accuracy of the numerical algorithm on the

icosahedral grid. The initial conditions used in the test were described by (70) with n = 5; coefficients
Am
5 ð0Þ;Bm

5 ð0Þ were selected randomly as Am
5 ¼ ½�0:5839;�0:8436;�0:4764; 0:6475; 0:1886; 0:8709, �0.8338,

0.1795,�0.7873,0.8842,0.2943], and Bm
5 ¼ ½�0:6263; 0:9803; 0:7222; 0:5945; 0:6026;�0:2076, 0.4556,0.6024,

0.9695,�0.4936,0.1098] for m 2 [�5,5]. The corresponding initial conditions u1,2(h,k, 0) are depicted in
Fig. 17. The following parameters characterizing the reaction–diffusion system are assumed: A = 2,
B = 5, l = 10�3, and m = 2.0 · 10�3; these values lead to c5 = �0.0450 and d5 = 1.9697i which corresponds
to a slightly damped harmonic oscillations of both fields.

The numerical solution of (69) is obtained with the help of (63). Considering the fact that the system of
equations, (69) is linear, we can write the term F(d/) in the following simpler form:
. Initial conditions for the test of the reaction–diffusion equation; left-hand side and right-hand side panels show the first and the
field, respectively.

. Numerical versus analytical solution for a selected point; analytical solution for u1: solid line, analytical solution for u2: dashed
umerical solution for u1: *, and numerical solution for u2: +.



Fig. 2
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u2
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Fðd/Þ ¼ P�1
c ðINp 	 JÞPc

	 

d/; ð77Þ
where INp is the Np · Np unit matrix, and J ¼ foF=ougjus
is the Jacobian defined during the linearization of

Eq. (67). The numerical solution is obtained for the time of 10 units with the time step of 0.025. These values
are comparable to those used in the advection tests in the previous sections.

The comparison of the analytical solution (76) and the numerical solution for a selected point on the sphere
(latitude = 0.22p, longitude = 1.32p) is depicted in Fig. 18. The solution and the solution error at T = 4.25 are
displayed in Figs. 19 and 20. The analysis of the data from Fig. 20 indicates that the numerical solution is quite
accurate with the maximum error not exceeding 0.01%. However, the spatial pattern of the error field depicted
in Fig. 20 has some residual structure reflecting the nonhomogeneity of the icosahedral geodesic mesh. Still,
the effect is not more pronounced than in a typical solution obtained on a constant resolution rectangular grid.
Fig. 19. Numerical solution of the Turing system at T = 4.25 (u1 left-hand side panel, u2 right-hand side panel).

0. Numerical solution error for Turing system at T = 4.25 (error of u1 left-hand side panel, error of u2 right-hand side panel).

5
norms for the Turing system

l1 l2 l1

0.0002 0.0002 0.0007
0.0003 0.0003 0.0009



Fig. 21. Numerical solution of the Brusselator system at the selected point on the sphere. The solution was obtained with A = 2, B = 5,
l = 10�3, m = 2.0l. The first field is depicted by the solid line, the second field by the dashed line.

Fig. 22. The illustration of the spatial pattern of the first field of the Brusselator system during the initial aperiodic stage; time dependence
of the solution is depicted in Fig. 21.
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The possible ways to reduce the effect of nonhomogeneity of the geodesic mesh have been recently discussed in
the literature in the context of the numerical solution of the shallow water equations (see [35,37] for the dis-
cussion). A quantitative summary of the solution accuracy is presented in Table 5. The overall level of the
scheme accuracy indicates that the described algorithm performs well when solving classical reaction–diffusion
problem suggested by Turing [38].

The linearized solution is certainly a good indication of the potential applicability of the method. It is nat-
ural, however, to question the performance of the scheme for the nonlinear system (67). Despite that the ana-
lytical solution for this case is not known, it is still useful to examine the solutions in a general qualitative
Fig. 23. The illustration of the cycle of spatial patterns of the first field of the Brusselator system in the oscillatory stage; time dependence
of the solution is depicted in Fig. 21.



Fig. 24. Numerical solution of the Brusselator system at the selected point on the sphere. The solution was obtained with A = 2, B = 5,
l = 10�3, m = 8.0l. The first field is depicted by the solid line, the second field by the dashed line.
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manner. It is particularly important to verify whether or not the grid nonhomogeneity will contaminate the
numerical solution of the nonlinear system.

Initially for the nonlinear reaction–diffusion system we assumed the same values of parameters as that
for the linearized system (A = 2, B = 5, l = 10�3 and m = 2.0 · 10�3). The numerical solution obtained
using scheme (63) is depicted in Figs. 21–23. Examination of the time dependence at (latitude = 0.22p, lon-
gitude = 1.32p) depicted in Fig. 21 shows that the numerical solution is periodic in time. However, the
time dependence in the nonlinear case has slightly different character than that in Fig. 18. The most nota-
ble difference is that the solution has initially an aperiodic stage (Figs. 21 and 22) which is absent in the
solution of the linearized equations. After the initial time of the adjustment, however, the system starts to
exhibit regular oscillations. A sample sequence of spatial patterns of these oscillations is depicted in
Fig. 23. The main conclusion from the examination of the reactive wave patterns on the sphere is the lack
of the grid effects associated with grid inhomogeneity. This fact could be significant while solving other
partial differential equations on the sphere by assuring that the grid structure effects do not distort the
solution when nonlinear reaction terms are included. In order to investigate the role of the specific selec-
tion of the time integration method, we have repeated the calculations for the nonlinear case with the
semi-implicit scheme (64). It is interesting to note that the obtained solution is almost identical to those
shown in Figs. 21–23.

The solution of the nonlinear equations can diverge significantly from the solution obtained for the linear-
ized system (69). This fact is particularly evident after solving (67) for the set of parameters, A = 2, B = 5,
l = 10�3, and m = 8.0 · 10�3. According to the results discussed in the literature [17] the Brusselator system
with the above listed parameters should converge, independently of the geometry of the domain, to the sta-
tionary pattern in the form of stripes. Thus, this type of the solution depends only on internal parameters such
as the reaction rates, the values of A and B and the diffusion coefficients. The numerical solution at (lati-
tude = 0.22p, longitude = 1.32p) depicted in Fig. 24 shows that the system indeed converges quickly to the
quasi-stationary state.

The examination of the structure of the field shown in Fig. 25 furthermore indicates that this state is
spatially inhomogeneous with characteristic network of belt patterns on the surface of the sphere as ex-
pected [17]. The behaviour of the system is thus very different than that exhibited by the linearized model
(76) that, for the same set of parameters, predicts the usual pattern of slightly damped oscillations. It is
interesting that despite the drastic change of the type of solution, the effects of grid irregularity are not pres-
ent; this fact is particularly important for the solution of other systems of the nonlinear partial differential
equations on the sphere.



Fig. 25. The illustration of the convergence of the spatial patterns of the first field to the spatially nonhomogeneous stationary state; time
dependence of the solution for this case is depicted in Fig. 24.
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10. Conclusions

The finite volume solver for the reaction–advection–diffusion equation presented in this paper is
straightforward and efficient, yet assures high accuracy. The presented method offers mass conservation,
quasi-monotonicity and good accuracy when applied to reactive scalar fields. In the case of linear advection,
the algorithm is able to retain the maximum value of the field even for the initial conditions with a disconti-
nuity in the first derivative. The general evaluation of the method presented in Tables 2–4 shows that the
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scheme is accurate. The explicit local adaptive dissipation applied with the algorithm has a small dissipation
and produces results which are, at least, equivalent to those obtained with FCT technique, but in a more effi-
cient manner. In addition to the good accuracy for conservative tracer, the performance of the scheme is con-
firmed by the analytical solutions of the reaction–diffusion system suggested by Turing [38]. This indicates that
the method can be used for other reactive systems in spherical geometry subject to some additional testing.
The most important subject to be addressed in the future testing of the method is its performance with stiff
chemical systems. The scheme described in this paper can be also easily applied on arbitrary differentiable
manifolds. This property is a direct consequence of the fact that the operators defined by (33) and (35) are
dependent only on the connectivity matrix and the general parameters defining grid geometry.
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